
2cogs2
Configuration Object Generation System

Bre� Viren

July 9, 2020

Bre� Viren 2cogs2 July 9, 2020 1 / 21

Some requirements for a configuration system

Configuration information:

must be valid
I well defined structure
I constraints on values
I valid-by-construction pa�erns
I centralized validation methods

is needed in multiple contexts
I contract between producers and consumers
I authoring, displaying, storing, serializing, native code types

must support varied and changing forms
I many types of applications and services
I some common “base” for implementing “roles”
I application- and instance-specific variety
I evolution of structure and values over time

Bre� Viren 2cogs2 July 9, 2020 2 / 21

Caveat 2cogs2-itate

The initial development of 2cogs2 focuses on harder core problems
and is not yet intended for “user/developers”.

Much still remains to be designed, implemented, integrated, etc.

Bre� Viren 2cogs2 July 9, 2020 3 / 21

The 2cogs2 approach

schema
Define formal schema to describe structure and constraints.

codegen
Generate code to validate, produce, transport and consume configuration.

correctness
Enable the pa�ern “single source of truth” (SSOT).

automate
Minimize human e�ort and the chaos it brings.

Bre� Viren 2cogs2 July 9, 2020 4 / 21

https://en.wikipedia.org/wiki/Single_source_of_truth

2cogs2 definition of schema

a schema is a data structure
which may be interpreted

as describing the structure of data
(including that of schema!)

Bre� Viren 2cogs2 July 9, 2020 5 / 21

Categories of schema interpretation

translate(schema)→ schema
codegen(schema, template)→ code
validate(schema, data)→ true | false

These functions are largely provided to 2cogs2 by the moo tool.

Bre� Viren 2cogs2 July 9, 2020 6 / 21

https://github.com/brettviren/moo

Defining schema

2cogs2 supports authoring schema with functions of an abstract base
schema in the Jsonnet data templating language1.

function(schema) {
types: [schema.string(pattern="^[a-zA-Z][a-zA-Z0-9_]*$")],

}

When called, function defines an application-level schema consisting of
a single string type taking a valid value that must match the given
pa�ern.

The schema object holds functions that return schema from a
particular schema domain (eg, Avro, JSON Schema)

App-level schema defined abstractly in terms these function calls.

12cogs2 (via moo) also supports defining schema in other languages (JSON, YAML,
INI, XML or languages that generate these) but these lack support for the abstract base
schema.

Bre� Viren 2cogs2 July 9, 2020 7 / 21

https://jsonnet.org/

Larger Schema Example

Describe the configuration for a “node” with “ports” and “components”
from the 2cogs2 demo.

function(schema) {
// ... other locals ...

local node = schema.record("Node", fields=[
schema.field("ident", ident,

doc="Identify the node instance"),
schema.field("portdefs", schema.sequence("Port"),

doc="Define ports used by components"),
schema.field("compdefs", schema.sequence("Comp"),

doc="Describe components needing ports"),
], doc="A node configures ports and components"),

types: [ltype, link, port, comp, node],
}

Bre� Viren 2cogs2 July 9, 2020 8 / 21

https://brettviren.github.io/cogs/demo.htm

Abstract base schema

function(schema) {
types: [schema.string(pattern="^[a-zA-Z][a-zA-Z0-9_]*$")],

}

schema object is like OO “abstract base class” instance.
2cogs2 demo includes these concrete domain schema:

avro-schema.jsonnet for codegen with Avro CPP or just moo
and for using serialization provided by nlohmann::json.

json-schema.jsonnet for object validation via JSON Schema
and moo.

Expected future work:

New domains: Protobuf / Cap’N Proto, depending on RPC choices.

Jsonnet functions for valid-by-construction configuration authoring.

A totally di�erent, simpler abstraction pa�ern (see backup slides).

Bre� Viren 2cogs2 July 9, 2020 9 / 21

https://avro.apache.org/docs/current/api/cpp/html/index.html
https://github.com/nlohmann/json
https://json-schema.org/

moo
. . . provides a Python3 CLI and module for processing of schema defined in
Jsonnet, JSON, XML, YAML, INI, etc, validation of objects in the same
languages and template-based file generation using Jinja.

$ moo --help
Usage: moo [OPTIONS] COMMAND [ARGS]...

moo command line interface

Options:
--help Show this message and exit.

Commands:
compile Compile a model to JSON
imports Emit a list of imports required by the model
many Render many files
render Render a template against a model.
render-many Render many files for a project.
validate Validate a model against a schema

moo essentially replaces a large set of other tools (jsonnet, jq, j2, grep, awk, etc) and the shell glue to connect them.

Bre� Viren 2cogs2 July 9, 2020 10 / 21

https://github.com/brettviren/moo
https://jinja.palletsprojects.com/

2cogs2 package dependency graph

cogs-demo

libcogs moo

for code
regen

ERS

BOOST

NLJS
(json.hpp) Python

Bre� Viren 2cogs2 July 9, 2020 11 / 21

2cogs2 package features

configuration stream methods for deserialization of configuration objects
from multiple sources and formats.

configurable base an abstract base mixin class for user code to receive
dynamically or statically typed configuration objects.

tech opinions ERS for exceptions, nlohmann::json for dynamic typed
intermediate data representation.

non-trival demo moo generated C++ config struct types and
serialization, component-based mocked framework and main
application (link to doc).

Bre� Viren 2cogs2 July 9, 2020 12 / 21

https://brettviren.github.io/cogs/demo.html

2cogs2 configuration stream

A configuration is delivered as an ordered sequence (stream) of objects.

std::string uri = "....";
stream_p s = cogs::make_stream(uri);
cogs::object o = s->pop();

The make_stream() factory returns steam based on parsing URI.
I Stream will draw configuration bytes from resource at URI.

The returned unique_ptr<cogs::Stream> is abstract.

cogs::object is a typedef for nlohmann::json and
provides a dynamic typed intermediate data representation layer.

Exceptions defined by ERS may be thrown if stream is corrupt or an
a�empt is made to pop() past its end.

Bre� Viren 2cogs2 July 9, 2020 13 / 21

2cogs2 stream types

URIs with built-in support:

file://config.json a JSON array of configuration objects

file://config.jstream a JSON Stream of configuration objects

Potential future stream types URIs:

Files via https:// addressing.

RPC server address (eg, hardwired host/port)

ZeroMQ/ZIO port spec (eg, direct or auto-discovered address)

Factory improvements for streams from shared lib / plugins.

Bre� Viren 2cogs2 July 9, 2020 14 / 21

https://en.wikipedia.org/wiki/JSON_streaming

2cogs2 delivery of configuration to consumer
A consumer may receive its configuration object by inheriting from a
virtual mixin class and implementing the method:

A dynamic typed interface
The user code must interpret a dynamic object.

struct ConfigurableBase {
virtual void configure(cogs::object obj) = 0;

};

A static typed interface
The user code receives C++ struct.

template<class CfgObj>
struct Configurable : virtual public ConfigurableBase {

virtual void configure(CfgObj&& cfgobj) = 0;
};

In the 2cogs2 demo, the struct is generated from schema via moo.

Bre� Viren 2cogs2 July 9, 2020 15 / 21

2cogs2 demo stream

The 2cogs2 demo stream assumes a pair-wise ordering:

component 1: democfg::ConfigHeader
component 1: corresponding config object
. . .
component N: democfg::ConfigHeader
component N: corresponding config object

Each pair:

header identifies a component implementation and instance name

payload provides config object for the identified component

This stream-level contract is governed by schema in the 2cogs2 demo.
In general, it is up to the application to define.

Bre� Viren 2cogs2 July 9, 2020 16 / 21

https://brettviren.github.io/cogs/demo.html#config-stream

Demo stream model and schema
Building model with helper functions (not shown)

model: [
head("demoSource", "mycomp_source1"),
source(42),

head("demoNode", "mynode_inst1"),
node("mynode1",

ports=[portdef("src",[
link("bind","tcp://127.0.0.1:5678")])],

comps=[compdef("mycomp_source1", "demoSource", ["src"])]),
],
schema: [

schema.head,
schema.comp,
schema.head,
schema.node,

],

Details on schema array next.

Bre� Viren 2cogs2 July 9, 2020 17 / 21

Demo stream schema (more)

JSON Schema requires types to be defined in a special location in the
structure. The compound() function helps prepare that.

local jscm = import "json-schema.jsonnet";
local compound(types, top=null) = {

ret : {
definitions: {[t._name]:t for t in types}

} + if std.type(top) == "null"
then types[std.length(types)-1]
else top,

}.ret;

local schema = {
head: compound(head_schema(jscm).types),
comp: compound(comp_schema(jscm).types),
node: compound(node_schema(jscm).types),

};

tl;dr: understand stream-level schema then factor this complexity away from user view.

Bre� Viren 2cogs2 July 9, 2020 18 / 21

Perform validation

The moo tool can dig data structure it is given a schema and model and
perform validation on a single object (default) or on an array.

$ moo validate --sequence \
-S schema -s demo/demo-config.jsonnet \
-D model demo/demo-config.jsonnet

Currently returns null for success or a traceback into the model and
schema data structures showing where validation failed.

Bre� Viren 2cogs2 July 9, 2020 19 / 21

Some work still needed for DUNE FD DAQ

Redesign the abstract schema pa�ern from using functions to using to
meta-schema objects (details in backups)

Move general parts from demo to moo.
Integration with DUNE FD DAQ appfmk may include:

I a “stream manager” hooking into appfmk factory

A choice of RPC for larger CCM may influence replacement of moo
generated config structs and serialization (eg with Protobuf, Cap’N
Proto, etc).

Understand if 2cogs2 and moo approach can help with connecting
CCM RPC to appfmk.

Understand larger configuration issues (authoring, version control,
schema evolution, wholesale validation).

Bre� Viren 2cogs2 July 9, 2020 20 / 21

FIN

Bre� Viren 2cogs2 July 9, 2020 21 / 21

